Automatic Signal Segmentation using the Fractal Dimension and Weighted Moving Average Filter
نویسندگان
چکیده
In many applications of the signal processing such as automatic analysis of EEG signal, it is needed that signal is split to smaller parts that each part has the same statistical characterizations such as the amplitude and frequency. This act has been called signal segmentation. In this paper, the signal is initially filtered by weighted moving average (WMA). Not only WMA can emphasize recent events which this act is very important in the signal segmentation, but it can also detect important underlying unadulterated from of the time series by attenuating its short-term variations. After filtering the signal, fractal dimension (FD) of the signal is computed and used as a feature for automatic segmentation of the signal. The proposed method has been applied on the synthetic and real EEG signals and then, this method has been compared with improved nonlinear energy operator (INLEO) method which is known as a good method for segmenting a signal. The simulation results indicate that these proposed techniques have greater accuracy compared with previous methods.
منابع مشابه
An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملReservoir Rock Characterization Using Wavelet Transform and Fractal Dimension
The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011